Nächster Termin:
24.06.2024
Kurs endet am:
19.07.2024
Gesamtdauer:
160 Stunden in 26 Tagen
Praktikum:
Nein
Unterrichtssprachen:
  • Deutsch
Veranstaltungsart:
  • Weiterbildung 
Angebotsform:
  • Präsenzveranstaltung 
  • Virtuelles Klassenzimmer 
  • E-Learning 
Durchführungszeit:
  • Tagesveranstaltung
  • Montag bis Freitag von 08:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Teilnehmer min.:
6
Teilnehmer max.:
25
Preis:
keine Angaben
Förderung:
  • Bildungsgutschein 
  • Qualifizierungschancengesetz 
  • Deutsche Rentenversicherung 
  • EU/Bund/Land 
Abschlussart:
Zertifikat/Teilnahmebestätigung 
Abschlussprüfung:
Ja
Abschlussbezeichnung:
Zertifikat „Data Engineer“
Zertifizierungen des Angebots:
  • SGB III-Maßnahmezulassung 
Maßnahmenummer:
  • 075/16/24
Angebot nur für Frauen:
Nein
Kinderbetreuung:
Nein
Infoqualität:
Suchportal Standard Plus

Zielgruppen:
Der Lehrgang richtet sich an Personen mit abgeschlossenem Studium in der Informatik, Wirtschaftsinformatik, Mathematik oder vergleichbarer Qualifikation.
Fachliche Voraussetzungen:
Programmierkenntnisse und Erfahrungen mit Datenbanken werden vorausgesetzt.
Technische Voraussetzungen:
Die Teilnahme am Unterricht erfolgt über Internet per Videotechnik. Voraussetzung für die Nutzung deiner eigenen Hardware ist die Installation der Applikation alfaview®: https://cloud.alfanetz.de/test Falls du keinen geeigneten Computer hast, erhältst du von uns das technische Equipment, um von zuhause aus am Kurs teilnehmen zu können. Sollten die räumlichen und technischen Voraussetzungen dir eine Teilnahme von zuhause aus nicht ermöglichen, kannst du deinen Kurs auch in einem unserer Bildungszentren absolvieren.
Systematik der Agenturen für Arbeit:
  • C 1435-15-10 Datenbankentwicklung, -programmierung - allgemein

Inhalte

Data Engineers beschäftigen sich mit der Strukturierung und Bereitstellung von individuell relevanten Daten. Die Aufgaben bestehen unter anderem in der Auswahl der richtigen Soft- und Hardware-Architektur sowie in der Beurteilung vom Einsatz Künstlicher Intelligenz (KI) in diesem Bereich.

Data Engineer

Grundlagen Business Intelligence (ca. 2 Tage)
Anwendungsfelder, Dimensionen einer BI Architektur
Grundlagen Business Intelligence, OLAP, OLTP, Aufgaben der Data Engineers
Data Warehousing (DWH): Umgang und Verarbeitung von strukturierten, semi-strukturierten und unstrukturierten Daten

Anforderungsmanagement (ca. 2 Tage)
Aufgaben, Ziele und Vorgehensweise in der Anforderungsanalyse
Datenmodellierung, Einführung/Modellierung mit ERM
Einführung/Modellierung in der UML
· Klassendiagramme
· Use-Case Analyse
· Aktivitätsdiagramme

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI-Technologien im beruflichen Umfeld
Anwendungsmöglichkeiten und Praxis-Übungen

Datenbanken (ca. 3 Tage)
Grundlagen von Datenbanksystemen
Architektur von Datenbankmanagementsystemen
Anwendung RDBMS
Umsetzung Datenmodell in RDBMS, Normalformen
Praktische und theoretische Einführung in SQL
Grenzen von Relationalen Datenbanken, csv, json

Data Warehouse (ca. 4 Tage)
Star Schema
Datenmodellierung
Erstellung Star Schema in RDBMS
Snowflake Schema, Grundlagen, Datenmodellierung
Erstellung Snowflake Schema in RDBMS
Galaxy Schema: Grundlagen, Datenmodellierung
Slowly Changing Dimension Tables Typ 1 bis 5 – Restating, Stacking, Reorganizing, mini Dimension und Typ 5
Einführung in normal, causal, mini und monster, heterogeneous und sub Dimensions
Vergleich von state und transaction oriented
Faktentabellen, Density und Storage vom DWH

ETL (ca. 4 Tage)
Data Cleansing
· Null Values
· Aufbereitung von Daten
· Harmonisierung von Daten
· Anwendung von Regular Expressions
Data Understanding
· Datenvalidierung
· Statistische Datenanalyse
Datenschutz, Datensicherheit
Praktischer Aufbau von ETL-Strecken
Data Vault 2.0, Grundlagen, Hubs, Links, Satellites, Hash Key, Hash Diff.
Data Vault Datenmodellierung
Praktischer Aufbau eines Data Vault Modells – Raw Vault, Praktische Umsetzung von Hash-Verfahren

Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse

Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Bildungsziel

Du beherrschst Prozesse rund um die Zusammenführung, Aufbereitung, Anreicherung und Weitergabe von Daten.

Alle Angaben ohne Gewähr. Für die Richtigkeit der Angaben sind ausschließlich die Anbieter verantwortlich.

Erstmals erschienen am 13.01.2024, zuletzt aktualisiert am 18.04.2024