Nächster Termin:
09.12.2024 - Weihnachtsferien vom 24.12.2024 - 01.01.2025
Kurs endet am:
07.02.2025
Gesamtdauer:
320 Stunden
Praktikum:
Nein
Unterrichtssprachen:
  • Deutsch
Veranstaltungsart:
  • Weiterbildung 
Angebotsform:
  • Virtuelles Klassenzimmer 
  • E-Learning 
Durchführungszeit:
  • Tagesveranstaltung
  • Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Teilnehmer min.:
6
Teilnehmer max.:
25
Preis:
keine Angaben
Förderung:
  • Bildungsgutschein 
  • Qualifizierungschancengesetz 
  • Deutsche Rentenversicherung 
  • EU/Bund/Land 
Abschlussart:
Zertifikat/Teilnahmebestätigung 
Abschlussprüfung:
Ja
Abschlussbezeichnung:
Zertifikat „Big Data Engineer“, Zertifikat „Data Engineer“, Zertifikat „Big Data Specialist"
Zertifizierungen des Angebots:
  • SGB III-Maßnahmezulassung 
Maßnahmenummer:
  • 962/20/24
Angebot nur für Frauen:
Nein
Kinderbetreuung:
Nein
Infoqualität:
Suchportal Standard Plus

Zielgruppen:
Der Lehrgang richtet sich an Personen mit abgeschlossenem Studium in der Informatik, Wirtschaftsinformatik, BWL, Mathematik oder vergleichbarer Qualifikation.
Fachliche Voraussetzungen:
Programmierkenntnisse (idealerweise Python) und Erfahrungen mit Datenbanken (SQL) werden vorausgesetzt.
Technische Voraussetzungen:
Die Teilnahme am Unterricht erfolgt über Internet per Videotechnik. Voraussetzung für die Nutzung deiner eigenen Hardware ist die Installation der Applikation alfaview®: https://cloud.alfanetz.de/test Falls du keinen geeigneten Computer hast, erhältst du von uns das technische Equipment, um von zuhause aus am Kurs teilnehmen zu können. Sollten die räumlichen und technischen Voraussetzungen dir eine Teilnahme von zuhause aus nicht ermöglichen, kannst du deinen Kurs auch in einem unserer Bildungszentren absolvieren.
Systematik der Agenturen für Arbeit:
  • C 1435-15-10 Datenbankentwicklung, -programmierung - allgemein

Inhalte

Big Data Engineers werden zur interdisziplinären Analyse und Konzeption von IT- und Datenbanklösungen eingesetzt. Der Kurs erläutert daher die Grundlagen von Business Intelligence, den Einsatz von Künstlicher Intelligenz (KI) sowie die Anforderungen des Data Engineerings.

Data Engineer

Grundlagen Business Intelligence (ca. 2 Tage)
Anwendungsfelder, Dimensionen einer BI Architektur
Grundlagen Business Intelligence, OLAP, OLTP, Aufgaben der Data Engineers
Data Warehousing (DWH): Umgang und Verarbeitung von strukturierten, semi-strukturierten und unstrukturierten Daten

Anforderungsmanagement (ca. 2 Tage)
Aufgaben, Ziele und Vorgehensweise in der Anforderungsanalyse
Datenmodellierung, Einführung/Modellierung mit ERM
Einführung/Modellierung in der UML
· Klassendiagramme
· Use-Case Analyse
· Aktivitätsdiagramme

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI-Technologien im beruflichen Umfeld
Anwendungsmöglichkeiten und Praxis-Übungen

Datenbanken (ca. 3 Tage)
Grundlagen von Datenbanksystemen
Architektur von Datenbankmanagementsystemen
Anwendung RDBMS
Umsetzung Datenmodell in RDBMS, Normalformen
Praktische und theoretische Einführung in SQL
Grenzen von Relationalen Datenbanken, csv, json

Data Warehouse (ca. 4 Tage)
Star Schema
Datenmodellierung
Erstellung Star Schema in RDBMS
Snowflake Schema, Grundlagen, Datenmodellierung
Erstellung Snowflake Schema in RDBMS
Galaxy Schema: Grundlagen, Datenmodellierung
Slowly Changing Dimension Tables Typ 1 bis 5 – Restating, Stacking, Reorganizing, mini Dimension und Typ 5
Einführung in normal, causal, mini und monster, heterogeneous und sub Dimensions
Vergleich von state und transaction oriented
Faktentabellen, Density und Storage vom DWH

ETL (ca. 4 Tage)
Data Cleansing
· Null Values
· Aufbereitung von Daten
· Harmonisierung von Daten
· Anwendung von Regular Expressions
Data Understanding
· Datenvalidierung
· Statistische Datenanalyse
Datenschutz, Datensicherheit
Praktischer Aufbau von ETL-Strecken
Data Vault 2.0, Grundlagen, Hubs, Links, Satellites, Hash Key, Hash Diff.
Data Vault Datenmodellierung
Praktischer Aufbau eines Data Vault Modells – Raw Vault, Praktische Umsetzung von Hash-Verfahren

Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse



Big Data Specialist

Was ist Big Data? (ca. 1 Tag)
Volume, Velocity, Variety, Value, Veracity
Chancen und Risiken großer Datenmengen
Abgrenzung: Business Intelligence, Data Analytics, Data Science
Was ist Data Mining?

Einführung in Apache Frameworks (ca. 2 Tage)
Big-Data-Lösungen in der Cloud
Datenzugriffsmuster
Datenspeicherung

MapReduce (ca. 3 Tage)
MapReduce Philosophie
Hadoop Cluster
Verketten von MapReduce Jobs

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI-Technologien im beruflichen Umfeld
Anwendungsmöglichkeiten und Praxis-Übungen

Komponenten (ca. 3 Tage)
Kurzvorstellung von verschiedenen Tools
Datenübertragung
YARN-Anwendungen
Hadoop JAVA-API
Apache Spark

NoSQL und HBase (ca. 3 Tage)
CAP-Theorem
ACID und BASE
Typen von Datenbanken
HBase

Big Data Visualisierung (ca. 3 Tage)
Theorien der Visualisierung
Diagrammauswahl
Neue Diagrammarten
Werkzeuge zur Datenvisualisierung

Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse

Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Bildungsziel

Du beherrschst die Prozesse rund um die Zusammenführung, Aufbereitung, Anreicherung und Weitergabe von Daten. Außerdem kannst du große, unstrukturierte Datenmengen mit Hilfe von branchenspezifischer Software verarbeiten. Du verfügst über Kenntnisse im Framework Apache und weißt, wie Daten ansprechend visualisiert werden.

Alle Angaben ohne Gewähr. Für die Richtigkeit der Angaben sind ausschließlich die Anbieter verantwortlich.

Erstmals erschienen am 14.07.2024, zuletzt aktualisiert am 14.10.2024