Nächster Termin:
09.12.2024 - Weihnachtsferien vom 24.12.2024 - 01.01.2025
Kurs endet am:
10.01.2025
Gesamtdauer:
160 Stunden
Praktikum:
Nein
Unterrichtssprachen:
  • Deutsch
Veranstaltungsart:
  • Weiterbildung 
Angebotsform:
  • Virtuelles Klassenzimmer 
  • E-Learning 
Durchführungszeit:
  • Tagesveranstaltung
  • Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Teilnehmer min.:
6
Teilnehmer max.:
25
Preis:
keine Angaben
Förderung:
  • Bildungsgutschein 
  • Qualifizierungschancengesetz 
  • Deutsche Rentenversicherung 
  • EU/Bund/Land 
Abschlussart:
Zertifikat/Teilnahmebestätigung 
Abschlussprüfung:
Ja
Abschlussbezeichnung:
Zertifikat „Deep Learning“
Zertifizierungen des Angebots:
  • SGB III-Maßnahmezulassung 
Maßnahmenummer:
  • 074/5/24
Angebot nur für Frauen:
Nein
Kinderbetreuung:
Nein
Infoqualität:
Suchportal Standard Plus

Zielgruppen:
Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-)Ingenieurwissenschaften
Fachliche Voraussetzungen:
Vorkenntnisse im Bereich Machine Learning sowie in der Programmiersprache Python werden vorausgesetzt.
Technische Voraussetzungen:
Die Teilnahme am Unterricht erfolgt über Internet per Videotechnik. Voraussetzung für die Nutzung deiner eigenen Hardware ist die Installation der Applikation alfaview®: https://cloud.alfanetz.de/test Falls du keinen geeigneten Computer hast, erhältst du von uns das technische Equipment, um von zuhause aus am Kurs teilnehmen zu können. Sollten die räumlichen und technischen Voraussetzungen dir eine Teilnahme von zuhause aus nicht ermöglichen, kannst du deinen Kurs auch in einem unserer Bildungszentren absolvieren.
Systematik der Agenturen für Arbeit:
  • C 1435-10-10 Softwareentwicklung, Programmierung - allgemein

Inhalte

Mit Deep Learning lassen sich große Datenmengen nach Mustern und Modellen untersuchen. Es kommt daher häufig für die Objekt-, Gesichts- oder Spracherkennung zum Einsatz. Der Kurs erläutert dir die Methoden des Deep Learnings auf Basis von neuronalen Netzen.

Deep Learning

Einführung Deep Learning (ca. 1 Tag)
Deep Learning als eine Art von Machine Learning

Grundlagen in neuronalen Netzen (ca. 4 Tage)
Perceptron
Berechnung neuronaler Netze
Optimierung der Modellparameter, Backpropagation
Deep‐Learning‐Bibliotheken
Regression vs. Klassifikation
Lernkurven, Überanpassung und Regularisierung
Hyperparameteroptimierung
Stochastischer Gradientenabstieg (SGD)
Momentum, Adam Optimizer
Lernrate

Convolutional Neural Network (CNN) (ca. 2 Tage)
Bildklassifizierung
Convolutional‐Schichten, Pooling‐Schichten
Reshaping‐Schichten, Flatten, Global‐Average‐Pooling
CNN‐Architekturen ImageNet‐Competition
Tiefe neuronale Netze, Vanishing Gradients, Skip‐Verbindungen, Batch‐Normalization

Transfer Learning (ca. 1 Tag)
Anpassen von Modellen
Unüberwachtes Vortrainieren
Image‐Data‐Augmentation, Explainable AI

Regional CNN (ca. 1 Tag)
Objektlokalisierung
Regressionsprobleme
Verzweigte neuronale Netze

Methoden der kreativen Bilderzeugung (ca. 1 Tag)
Generative Adversarial Networks (GAN)
Deepfakes
Diffusionsmodelle

Recurrente neurale Netze (ca. 2 Tage)
Sequenzanalyse
Rekurrente Schichten
Backpropagation through time (BPTT)
Analyse von Zeitreihen
Exploding und Vanishing Gradient Probleme
LSTM (Long Short‐Term Memory)
GRU (Gated Recurrent Unit)
Deep RNN
Deep LSTM

Textverarbeitung durch neuronale Netze (ca. 2 Tage)
Text‐Preprocessing
Embedding‐Schichten
Text‐Klassifizierung
Sentimentanalyse
Transfer‐Learning in NLP
Übersetzungen
Seqence‐to‐Sequence‐Verfahren, Encoder‐Decoder‐Architektur

Sprachmodelle (ca. 1 Tag)
BERT, GPT
Attention‐Schichten, Transformers
Textgeneration‐Pipelines
Summarization
Chatbots

Deep Reinforcement Learning (ca. 1 Tag)
Steuerung dynamischer Systeme
Agentensysteme
Training durch Belohnungen
Policy Gradients
Deep‐Q‐Learning

Bayes'sche neuronale Netze (ca. 1 Tag)
Unsicherheiten in neuronalen Netzen
Statistische Bewertung von Prognosen
Konfidenz, Standardabweichung
Unbalancierte Daten
Sampling‐Methoden

Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse

Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Bildungsziel

Nach dem Lehrgang kennst du die Einsatzbereiche von Deep Learning und die Funktionsweisen neuronaler Netzwerke. Du verstehst, wie neuronale Netze Objekte in Bildern erkennen können, und bist in der Lage, maschinelles Lernen bereitzustellen und Prozesse zu dokumentieren.

Alle Angaben ohne Gewähr. Für die Richtigkeit der Angaben sind ausschließlich die Anbieter verantwortlich.

Erstmals erschienen am 14.07.2024, zuletzt aktualisiert am 05.11.2024