Nächster Termin:
10.02.2025
Kurs endet am:
07.03.2025
Gesamtdauer:
160 Stunden
Praktikum:
Nein
Unterrichtssprachen:
  • Deutsch
Veranstaltungsart:
  • Weiterbildung 
Angebotsform:
  • Virtuelles Klassenzimmer 
  • E-Learning 
Durchführungszeit:
  • Tagesveranstaltung
  • Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Teilnehmer min.:
6
Teilnehmer max.:
25
Preis:
keine Angaben
Förderung:
  • Bildungsgutschein 
  • Qualifizierungschancengesetz 
  • Deutsche Rentenversicherung 
  • EU/Bund/Land 
Abschlussart:
Zertifikat/Teilnahmebestätigung 
Abschlussprüfung:
Ja
Abschlussbezeichnung:
Zertifikat „Data Analytics“
Zertifizierungen des Angebots:
  • SGB III-Maßnahmezulassung 
Maßnahmenummer:
  • 211/260/23
Angebot nur für Frauen:
Nein
Kinderbetreuung:
Nein
Infoqualität:
Suchportal Standard Plus

Zielgruppen:
Der Lehrgang richtet sich an Personen mit abgeschlossenem Studium in der Informatik, Wirtschaftsinformatik, Mathematik, BWL oder vergleichbarer Qualifikation.
Fachliche Voraussetzungen:
Programmierkenntnisse (idealerweise Python) und Erfahrungen mit Datenbanken (SQL) werden vorausgesetzt.
Technische Voraussetzungen:
Die Teilnahme am Unterricht erfolgt über Internet per Videotechnik. Voraussetzung für die Nutzung deiner eigenen Hardware ist die Installation der Applikation alfaview®: https://cloud.alfanetz.de/test Falls du keinen geeigneten Computer hast, erhältst du von uns das technische Equipment, um von zuhause aus am Kurs teilnehmen zu können. Sollten die räumlichen und technischen Voraussetzungen dir eine Teilnahme von zuhause aus nicht ermöglichen, kannst du deinen Kurs auch in einem unserer Bildungszentren absolvieren.
Systematik der Agenturen für Arbeit:
  • C 1435-15-10 Datenbankentwicklung, -programmierung - allgemein

Inhalte

Der Kurs lehrt die Datenanalyse und Datenvisualisierung. Du lernst, Python sowie SQL- und NoSQL-Datenbanken zielgerichtet einzusetzen sowie Künstliche Intelligenz (KI) im Beruf anzuwenden. Auch erwirbst du Kenntnisse zur Verwendung von Dashboards und TextMining.

Data Analytics

Einführung Datenanalyse (ca. 1 Tag)
CRISP-DM Referenzmodell
Data Analytics Workflows
Begriffsabgrenzung Künstliche Intelligenz, Machine Learning, Deep Learning
Anforderungen und Rolle im Unternehmen der Data Engineers, Data Scientists und Data Analysts

Wiederholung Grundlagen Python (ca. 1 Tag)
Datentypen
Funktionen

Datenanalyse (ca. 3 Tage)
Zentrale Python-Module im Kontext Data Analytics (NumPy, Pandas)
Prozess der Datenaufbereitung
Data Mining Algorithmen in Python

Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld

Datenvisualisierung (ca. 3 Tage)
Explorative Datenanalyse
Insights
Datenqualität
Nutzenanalyse
Visualisierung mit Python: Matplotlib, Seaborn, Plotly Express
Data Storytelling

Datenmanagement (ca. 2 Tage)
Big Data Architekturen
Relationale Datenbanken mit SQL
Vergleich von SQL- und NoSQL-Datenbanken
Business Intelligence
Datenschutz im Kontext der Datenanalyse

Datenanalyse im Big Data Kontext (ca. 1 Tag)
MapReduce-Ansatz
Spark
NoSQL

Dashboards (ca. 3 Tage)
Bibliothek: Dash
Aufbau von Dashboards – Dash Components
Customizing von Dashboards
Callbacks

Text Mining (ca. 1 Tag)
Data Preprocessing
Visualisierung
Bibliothek: SpaCy

Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse

Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Bildungsziel

Nach dem Lehrgang kannst du Daten analysieren, visualisieren und managen. Du verstehst zudem die Verwendung von Dashboards und TextMining.

Alle Angaben ohne Gewähr. Für die Richtigkeit der Angaben sind ausschließlich die Anbieter verantwortlich.

Erstmals erschienen am 12.09.2024, zuletzt aktualisiert am 12.12.2024